Probabilistic H-norm estimation via Gaussian process system identification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian process based recursive system identification

This paper is concerned with the problem of recursive system identification using nonparametric Gaussian process model. Non-linear stochastic system in consideration is affine in control and given in the input-output form. The use of recursive Gaussian process algorithm for non-linear system identification is proposed to alleviate the computational burden of full Gaussian process. The problem o...

متن کامل

Continuous-Time Gaussian Process Motion Planning via Probabilistic Inference

We introduce a novel formulation of motion planning, for continuous-time trajectories, as probabilistic inference. We first show how smooth continuous-time trajectories can be represented by a small number of states using sparse Gaussian process (GP) models. We next develop an efficient gradient-based optimization algorithm that exploits this sparsity and Gaussian process interpolation. We call...

متن کامل

Fast Spatial Gaussian Process Maximum Likelihood Estimation via Skeletonization Factorizations

Maximum likelihood estimation for parameter-fitting given observations from a Gaussian process in space is a computationally-demanding task that restricts the use of such methods to moderately-sized datasets. We present a framework for unstructured observations in two spatial dimensions that allows for evaluation of the log-likelihood and its gradient (i.e., the score equations) in Õpn3{2q time...

متن کامل

Robust Subspace System Identification via Weighted Nuclear Norm Optimization ?

Subspace identification is a classical and very well studied problem in system identification. The problem was recently posed as a convex optimization problem via the nuclear norm relaxation. Inspired by robust PCA, we extend this framework to handle outliers. The proposed framework takes the form of a convex optimization problem with an objective that trades off fit, rank and sparsity. As in r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2020

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2020.12.211